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Potential for Transcranial Laser or LED Therapy
to Treat Stroke, Traumatic Brain Injury,

and Neurodegenerative Disease
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Near-infrared (NIR) light passes readily through the
scalp and skull and a small percentage of incident power

density can arrive at the cortical surface in humans.1 The
primary photoreceptors for red and NIR light are mitochon-
dria, and cortical neurons are exceptionally rich in mito-
chondria. It is likely that brain cells are ideally set up to
respond to light therapy. The basic biochemical pathways
activated by NIR light, e.g., increased adenosine-5’-triphos-
phate (ATP) production, and signaling pathways activated by
reactive oxygen species, nitric oxide release, and increased
cyclic adenosine monophosphate (AMP) all work together to
produce beneficial effects in brains whose function has been
compromised by ischemia, traumatic injury, or neurodegen-
eration. One of the main mechanisms of action of transcranial
light therapy (TLT) is to prevent neurons from dying, when
they have been subjected to some sort of hypoxic, traumatic,
or toxic insult. This is probably because of light-mediated
upregulation of cytoprotective gene products such as anti-
oxidant enzymes, heat shock proteins, and anti-apoptotic
proteins. Light therapy in vitro has been shown to protect
neurons from death caused by methanol,2 cyanide or tetro-
dotoxin,3 and amyloid beta peptide.4

There is also probably a second mechanism operating in
TLT; increased neurogenesis. Neurogenesis is the generation
of neuronal precursors and birth of new neural cells.5 Two
key sites for adult neurogenesis include the subventricular
zone (SVZ) of the lateral ventricles, and the subgranular
layer (SGL) of the dentate gyrus in the hippocampus.6

Neurogenesis can be stimulated by physiological factors,
such as growth factors and environmental enrichment,
and by pathological processes, including ischemia and
neurodegeneration.7 Adult neurogenesis (in the hippocam-
pus particularly) is now recognized as a major determinant
of brain function both in experimental animals and in hu-
mans. Neural progenitor cells in their niche in the SGL of the
dentate gyrus give birth to newly formed neurons that
are thought to play a role in brain function, particularly in
olfaction and in hippocampal-dependent learning and

memory.8 In small animal models neurogenesis can be
readily detected by incorporation of bromodeoxyuridine
(BrdU), injected before euthanasia, into proliferating brain
cells. Increased neurogenesis after TLT, has been demon-
strated in a rat model of stroke,9 and in the Hamblin labo-
ratory after TLT for acute traumatic brain injury (TBI) in mice
(W. Xuan, T. Ando, et al., unpublished data). These two
mechanisms of action of TLT in ameliorating brain damage
(prevention of neuronal death and increased neurogenesis)
have motivated studies in both animals and humans for di-
verse brain disorders and diseases. TLT for acute stroke is the
most developed,10 but acute TBI has also been shown to
benefit from TLT.11 These areas are reviewed further.

Stroke

In an early study with TLT to treat acute stroke in rats,
significant beneficial results were obtained whether TLT was
applied in a bilateral, ipsilesional or contralesional manner.12

TLT (808 nm) significantly improved recovery ( p < 0.01) at 3
weeks following ischemic stroke when treated once, at 24 h
post-stroke (contralesional; power density, 7.5 mW/cm2 to
brain tissue).9 The number of newly formed neuronal cells,
assessed by double immunoreactivity to BrdU and tubulin
isotype III, as well as migrating cells (doublecortin immuno-
reactivity), was significantly elevated in the ipsilesional SVZ.
There was no significant difference in the stroke lesion area
between control and laser-irradiated rats. The authors sug-
gested that an underlying mechanism for the functional ben-
efit post-TLT was possible induction of neurogenesis. Other
studies have also suggested that because improvement in
neurologic outcome may not be evident for 2–4 weeks in the
post-stroke rat model, delayed benefits may be caused, in part,
by induction of neurogenesis and migration of neurons.13,14

A recent study with embolized rabbits showed a direct
relationship between level of cortical fluence (energy density,
J/cm2) delivered, and cortical ATP content.15 Five minutes
following embolization (right carotid), rabbits were exposed
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to 2 min of NIR TLT using 808-nm laser on skin surface,
posterior to bregma at midline. Three hours later, the cere-
bral cortex was excised. Use of continuous wave (CW) TLT
(7.5 mW/cm2, 0.9 J/cm2) resulted in a 41% increase in corti-
cal ATP. Use of 100-Hz pulsed wave (PW) TLT (37.5 mW/
cm2, 4.5 J/cm2) resulted in a 157% increase in cortical ATP.
Surprisingly, the increased cortical ATP level of 157% was
higher than that measured in naive rabbits that had never
suffered stroke. The authors suggested in future studies,
greater improvement might be achieved by optimizing
length of treatment, and mode of treatment (PW, perhaps at
100 Hz).

TLT has been shown to significantly improve outcome in
human acute stroke patients, when applied at *18 h post-
stroke, over the entire surface of the head (20 points in 10/20
EEG system) regardless of stroke location.16–18 Significant
improvements ( p < 0.04) were observed in the moderate and
moderate–severe stroke patients only (n = 434), who received
the real laser protocol (vs. sham), but not in severe stroke
patients.17

To date, there are no TLT studies to treat chronic stroke
patients. The use of laser light to stimulate acupuncture
points on the body (instead of needles) to treat paralysis in
chronic stroke patients ( > 10 months post-stroke onset) has
resulted in similar levels of improvement, following a series
of 20 or 40 laser (or needle) treatments.19–21 A 20-mW, 780-
nm, CW laser with 1-mm diameter aperture (Unilaser,
Denmark) was used (51–103 J/cm2 per point). Overall, 5/7
(71.4%) of the patients showed improvement, with an in-
crease of 11–28% in isolated, active range of motion for
shoulder abduction, knee flexion, and/or knee extension.
The two patients who showed no improvement had severe
paralysis, with results similar to TLT results with severe,
acute stroke patients.17 Therefore, stroke patients with pa-
ralysis improved when the paralysis was not severe, al-
though a reduction in spasticity has been observed in severe
cases (M.A.N., personal observation). Stroke patients with
only mild or moderate hemiparesis (including only hand
paresis) appear to have the best potential for improvement.
On brain CT scan, these mild–moderate cases have smaller
areas of infarction adjacent to the body of the lateral ven-
tricle, than those with severe paralysis in whom the lesion is
often adjacent to the body of the lateral ventricle, closer to the
SVZ, possibly impeding potential for neurogenesis. Depth of
white matter lesion appears to be more important regarding
potential for recovery than is the overall size of the cortical
lesion.19–22 (See also: www.bu.edu/naeser/acupuncture)

TBI

Each year, an estimated 1.7 million people sustain a TBI.23

Patients with mild TBI (mTBI) have problems with poor
memory and cognition at 6 months post-TBI, and for years
afterwards. In 2000, the direct medical costs and indirect
costs (including lost productivity from TBI) totaled an esti-
mated $60 billion in the United States.24 There is a great need
for effective treatment to promote cognitive recovery, but no
standard, empirically validated interventions are available.25

Mild TBI from single and multiple events (often blast-
related) is the most frequent type of brain injury experienced
by Operation Enduring Freedom and Operation Iraqi Free-
dom military personnel.26 Diffuse axonal injury27 is often

observed in anterior corona radiata and fronto-temporal re-
gions.28 Cognitive problems result from tissue damage in the
prefrontal cortex and anterior cingulate gyrus within the
frontal lobes.

TLT has been used to treat acute TBI in animal models.11

Mice were subjected to closed-head injury (CHI) using a
weight drop procedure, and 4 h post- CHI, either sham, or
real NIR TLT (200 mW, 808 nm) was administered on the
skull (skin incision made) 4 mm caudal to the coronal suture
line, on the midline (2 min, 1.2–2.4 J/cm2, 10 or 20 mW/cm2).
After 5 days the motor behavior was significantly better
( p < 0.05) in the laser-treated group. At 28 days post- CHI,
the brain tissue volume was examined. The mean lesion size
in the laser-treated group (1.4%, SD 0.1) was significantly
smaller ( p < .001), than in the control group (12.1%, SD 1.3).
Additional TLT animal studies in acute TBI have produced
beneficial effects, including the balance of IL-1b, TNF-a, and
IL-6, thereby preventing cell death;29 and using either 665-
nm or 810-nm TLT (36 J/cm2) was highly effective in im-
proving the neurological performance of mice for 4 weeks
post-CHI.30

In humans, two chronic, mTBI cases showed improved
cognition following a series of TLT treatments with red/NIR
LED cluster heads.31 These were applied to midline, and
bilateral forehead/scalp areas (hair not shaved off, but par-
ted, under each 2-inch diameter 500-mW cluster head). Each
cluster head contained 52, 870-nm diodes and 9, 633-nm
diodes (12–15 mW each diode); 22.2 mW/cm2; 13.3 J/cm2 at
skin, estimated 0.4 J/cm2 at 1 cm deep (at cortex). Case 1 (66-
year-old woman) began TLT treatments at 7 years after
closed-head TBI (car accident). Pre-LED, she could focus
sustained attention on her computer for only 20 min. After 8
weekly LED treatments, her sustained computer time in-
creased to 3 h. To date, she has treated herself at home, al-
most daily for 6 years, and maintains her improved cognition
(she is now 72 years of age). Case 2 (52-year-old woman) is a
military officer who had a history of repeated closed-head
traumas. Brain MRI showed fronto-parietal atrophy. She was
medically disabled for 5 months before TLT. After 4 months
of nightly TLT at home, she returned to work full time as an
executive consultant at an international technology consul-
ting firm and was able to discontinue receiving medical
disability payments. Neuropsychological tests performed
after 9 months of TLT showed significant improvement (+ 1,
+ 2 SD) in memory (immediate and delayed recall), and in
cognition (executive function, inhibition, and inhibition ac-
curacy). Case 2 also showed improvement in post-traumatic
stress disorder (PTSD) symptomatology.

Mechanisms that may be associated with improved cog-
nition in the mTBI cases treated with TLT include:

1. Increase in ATP, which would increase cellular respi-
ration and oxygenation in hypoxic, compromised cells.

2. Acupuncture points treated along the Governing Vessel
(GV) acupuncture meridian, located in part, along the
mid-sagittal suture line. These points, GV 16 (inferior to
occipital protuberance), GV 20 (vertex), and GV 24
(near center-front hairline) have been used historically
to help treat patients in coma,32 and with stroke.33

3. Red/NIR TLT that may have irradiated the blood via
the valveless, emissary veins located on the scalp sur-
face, but were interconnecting with veins in the supe-
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rior sagittal sinus (Mary Dyson, personal communica-
tion). Direct, in vitro, blood irradiation with red-beam
laser has been observed to improve erythrocyte de-
formability (flexibility) and rheology.34 35

4. A possible increase in regional cerebral blood flow
(rCBF), specifically to the frontal lobes, as was observed
in the recent NIR TLT study to treat major depression.36

Neurodegenerative Diseases

There was a recent study of TLT having significant bene-
ficial effects in a transgenic mouse model of Alzheimer’s
disease (AD).37 Another study38 obtained some benefit in a
transgenic SOD1 mouse model of familial amyotrophic lat-
eral sclerosis. Light therapy for Parkinson’s disease (PD) has
been studied in an in vitro model of PD human transmi-
tochondrial cybrid ‘‘cytoplastic hybrid’’ neuronal cells,39 and
in a clinical study of 70 patients in Russia.40 The realization
that impaired neurogenesis plays an important role in de-
pression41 suggested that TLT could have beneficial effects in
patients with major depression and anxiety, and this was
confirmed in a pilot clinical trial with 10 subjects receiving a
single TLT to the forehead.36

TLT may be thought to be just in its infancy, but we be-
lieve the stage is set for rapid growth, especially in view of
the massive and continuing failure of clinical trials of phar-
maceuticals for many brain disorders. As the population
continues to age, and the epidemic of degenerative diseases
of aging such as AD and other dementias continues to grow,
TLT may make a real contribution to patient health. The LED
technology is not expensive ( < $5,000 for a unit with three
LED cluster heads). A TLT protocol with LEDs has potential
for home treatment. Additional controlled studies with real
and sham, transcranial low-level laser therapy and LED are
recommended.
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